首页> 外文OA文献 >Cordilleran Epithermal Cu-Zn-Pb-(Au-Ag) Mineralization in the Colquijirca District, Central Peru: Deposit-Scale Mineralogical Patterns
【2h】

Cordilleran Epithermal Cu-Zn-Pb-(Au-Ag) Mineralization in the Colquijirca District, Central Peru: Deposit-Scale Mineralogical Patterns

机译:秘鲁中部科尔基吉卡地区的山脉超热铜-锌-铅-(金-银)矿化:矿床规模的矿物学模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

At Colquijirca, central Peru, a Miocene diatreme-dome complex is associated in space and time with several large epithermal polymetallic (Cu-Zn-Pb-Au-Ag) deposits of the Cordilleran class. Of these deposits, Smelter and Colquijirca, located in the northern sector of the district, are part of a continuously mineralized northsouth corridor that extends for nearly 4 km outward from the diatreme-dome complex and to depths of 1 km below surface. This corridor is zoned from Cu-(Au) ores in its inner parts (Smelter deposit) to peripheral Zn- Pb-(Ag) ores (Colquijirca deposit). The Smelter-Colquijirca corridor has undergone minor erosion, providing a good example of a nearly intact paleo-epithermal system of the Cordilleran class. This description of the hypogene mineralogical patterns of the Smelter-Colquijirca corridor leads to the proposal that they are the result of superimposition in time and space of three main stages. During an early quartzpyrite stage, in which basically no economic ore deposition occurred, carbonate rocks surrounding the Marcapunta diatreme-dome complex were replaced by quartz and pyrite. This was followed by the main ore stage, which was largely superimposed on the quartz-pyrite replacements and produced zonation of ore minerals and metals along much of the Smelter-Colquijirca corridor. The zoning from Cu ores to Zn-Pb ores is complex and comprises a number of distinct and well-defined zones that display abrupt or gradual interfaces between zones. From internal to external parts, these zones consist mainly of the following mineral associations and assemblages: (1) enargite ± (luzonite, pyrite, colusite, tennantite, goldfieldite, ferberite, gold-silver tellurides, bismuthinite, gold, alunite, zunyite, kaolinite, dickite, smectite, illite, sericite, quartz); (2) enargite ± (pyrite, quartz, bismuthinite, alunite, dickite, kaolinite, smectite, illite, sericite); (3) bornite ± (pyrite, quartz, alunite, dickite, kaolinite, barite); (4) tennantite, barite ± (dickite, kaolinite, chalcopyrite, Bi- and/or Ag-bearing minerals); (5) chalcopyrite, sphalerite, galena ± (pyrite, quartz, dickite, kaolinite, barite); (6) sphalerite, galena, pyrite ± (hematite, kaolinite, siderite, magnetite, marcasite); (7) Zn-bearing carbonate zone; and (8) a barren outer zone consisting mainly of calcite. The crosscutting relationships and zoning patterns indicate that during the main ore stage, the inner Cu zones progressively overprinted the Zn-Pb zones. Evidence for the subsequent contraction of the mineralization front is also recognized. A mainly fault-controlled late ore stage was the last recognized episode of mineralization in the Smelter-Colquijirca corridor, related to the deposition of chalcocite, digenite, and covellite as veinlets cutting and replacing the different Cu-bearing zones of the main ore stage; it is not economically important. The different mineral associations and assemblages provide insights into the chemistry of the hydrothermal fluids, particularly that of the main ore stage. The acidity and oxidation state of the main ore-stage fluids varied considerably prior to significant interaction with the host rock. This is best observed in the enargite-bearing zones in which most acidic fluids formed alunite-zunyite-enargite−bearing assemblages and less acidic fluids formed smectite-illite-enargite and muscovite-enargite−bearing assemblages. The common kaolinite-dickite-enargite assemblage was related to a fluid with intermediate character between these two end-member styles. The significant fluctuations in the acidity of the ore fluids in the central parts of the mineralizing system are interpreted to reflect mixing between variable amounts of acidic and oxidized magmatic vapor-derived fluids and less acidic low to moderate saline ore-forming fluids of magmatic origin.
机译:在秘鲁中部的Colquijirca,中新世双穹顶穹顶复合体在空间和时间上与科迪勒兰级的几个大型超热多金属(Cu-Zn-Pb-Au-Ag)矿床有关。在这些矿床中,位于该区北部的Smelter和Colquijirca是一个连续矿化的南北走廊的一部分,该走廊从diatreme-dome复合体向外延伸了将近4 km,并延伸至地表以下1 km的深度。该走廊从其内部的Cu-(Au)矿(冶炼厂矿床)到外围的Zn-Pb-(Ag)矿(Colquijirca矿床)划分。 Smelter-Colquijirca走廊受到了轻微的侵蚀,为Cordilleran级别的近完整的古表热系统提供了一个很好的例子。对Smelter-Colquijirca走廊的次生矿物学模式的描述导致提出这样的建议,即它们是三个主要阶段在时间和空间上叠加的结果。在基本上没有经济矿石沉积的石英黄铁矿阶段,Marcapunta diatreme-Dome复合体周围的碳酸盐岩石被石英和黄铁矿代替。接下来是主要的矿石阶段,该阶段主要叠加在石英黄铁矿的替代品上,并在Smelter-Colquijirca走廊的大部分地区形成了矿石矿物和金属的分区。从铜矿石到Zn-Pb矿石的分区非常复杂,并且包含许多不同且定义明确的区域,这些区域之间显示出突变或逐渐的界面。从内部到外部,这些区域主要由以下矿物组成和组合组成:(1)辉镁石((堇青石,黄铁矿,堇青石,球铁矿,金田石,锰铁矿,金银碲化物,亚菱铁矿,金,铝矾石,方铅矿,高岭石) ,地开石,蒙脱石,伊利石,绢云母,石英); (2)辉石±(黄铁矿,石英,亚菱锰矿,亚矾石,地开辉石,高岭石,蒙脱石,伊利石,绢云母); (3)堇青石±(黄铁矿,石英,亚铝酸盐,地开石,高岭石,重晶石); (4)钙铁矿,重晶石±(方沸石,高岭石,黄铜矿,含Bi和/或Ag的矿物); (5)黄铜矿,闪锌矿,方铅矿±(黄铁矿,石英,地开石,高岭石,重晶石); (6)闪锌矿,方铅矿,黄铁矿±(赤铁矿,高岭石,菱铁矿,磁铁矿,镁铁矿); (7)含锌碳酸盐岩带; (8)贫瘠的外部带,主要由方解石组成。横切关系和分区模式表明,在主矿阶段,内部铜带逐渐覆盖了锌-铅带。也确认了矿化锋面随后收缩的证据。一个主要由断层控制的晚期矿石阶段是在Smelter-Colquijirca走廊中最后一个被确认的矿化事件,这与菱铁矿,地闪石和珍珠岩的沉积有关,因为细矿切割并替代了主要矿石阶段的不同含铜区域。这在经济上并不重要。不同的矿物组合和组合提供了对热液流体,特别是主矿阶段化学的认识。在与基质岩石发生显着相互作用之前,主要矿石阶段流体的酸度和氧化态发生了很大变化。最好的观察结果是在含钙辉石的带中,其中大多数酸性流体形成了带辉石-方铁矿-钙铁矿的组合,而较少酸性的流体则形成了蒙脱石-伊利石-辉石和白云母-凝结的组合。常见的高岭石-孔状辉石-凝灰岩组合物与在这两个端部构件样式之间具有中间特征的流体有关。矿化系统中心部分矿石液的酸度显着波动被解释为反映了可变数量的酸性和氧化岩浆蒸气衍生的流体与酸性较低的岩浆成因的中低盐成矿流体之间的混合。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号